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What is quantum computation?
Richard Feynman (1981)  
“Simulating Physics with Computers” 

“Nature isn’t classical  
… and if you want to make a simulation of Nature, 

you’d better make it quantum mechanical, 
and by golly it’s a wonderful problem,  

because it doesn’t look so easy.” 

“…What I hoped to do was to design a computer 
in which I knew how every part worked with everything 

specified down to the atomic level. In other words I wanted 
to write down a Hamiltonian for a system that could 

make a calculation. “



What is quantum computation?

• Classical Computers can efficiently 

   simulate statistical processes,

   but not quantum mechanical ones  
   — exponential resources! 

$ ∼ exp(V)

10011

• Unlike Quantum Computers  
   =  Universal Quantum Simulators

$ ∼ V

|ψ⟩

Today: A (nuclear) theorists perspective



What is quantum computation?
Digital (universal) Quantum Computers

source: IBM source: Microsoft

source: Google

source: Ion-Q, C. Monroe

source: NIST



What is quantum computation?

source: Rigetti

Quantum Annealing

Analog (non-universal)  
Quantum Simulators

source: U of Heidelberg

source: APS

Quantum Communication and Cryptography

source: Figuera group, BNL

+ much more!



Current Status

source: primrose schools

Quantum Computers just learned to walk

Noisy Intermediate-Scale  
Quantum (NISQ) technology

Impressive Progress in recent years!



Resources

email me: nmueller@bnl.gov

• https://www.bnl.gov/science/quantum.php

• https://www.bnl.gov/physics/NTG/

• https://www.bnl.gov/compsci/quantum/

• Books, e.g. “Quantum Computation and Quantum Information”, Nielsen & Chuang

• Webpages of the big players, e.g. Department of Energy, Google, IBM, Ion-Q,  
    Microsoft, NIST, Rigetti etc.

visit: https://www.bnl.gov/physics/NTG/people/mueller.php



Outline of this lecture

1. Basics - Quantum 101

2. Quantum Computing (Nuclear) Physics

3. How to do it?

4. New Ideas
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• Qubit = spin 1/2

• Many qubits, big Hilbert space ℋ′� = ℋ ⊗ ℋ… ⊗ ℋ

(a0 |0⟩ + b0 |1⟩) ⊗ (a1 |0⟩ + b1 |1⟩) = a0a1 |00⟩ + a0b1 |01⟩ + b0a1 |10⟩ + b0b1 |11⟩

(a0

b0) ⊗ (a1

b1) =

a0a1

a0b1

b0a1

b1a1

Size of this vector grows exponentially  
with quantum mechanical degrees of freedom

2N

• Hilbert space ℋ = span( |0⟩, |1⟩)

a |0⟩ + b |1⟩
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• Information can be encoded |001001110⟩

• Power of quantum: superposition of information
1

2 ( |001001110⟩ + |110001111⟩)

classically, think “matrix multiplication” 
    (matrix size grows exponential)

(0
1) = M (1

0) (M unitary)

• Quantum parallelism x = 001001110, f(x)?
1

2 ( |001001110⟩ + |111001111⟩) →
1

2 ( |101110010⟩ + |000110001⟩)

• Information processing 
    via quantum circuit

|001001110⟩ → |111101110⟩

“gate”
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Basics - Quantum 101
• Information can be entangled |ψ⟩ =

1

2 ( |01⟩ + |10⟩)
• Entanglement is a resource in Quantum Information Science!

• Quantum Mechanics: Extract Information via Measurement

• Extracting answer from Quantum Computer: subtile issue
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Quantum Computation for Physics
Challenges

• Quantum-Many Body systems

• Assuming  and  each had 2 states, Schroedinger equation for 
    Gold = matrix equation of size  

      (earth consists of ~  atoms, yet only 197 qubits enough to represent Hilbert space of Gold)

|n⟩ |p⟩
2197 ∼ 1059

1050

• Many degrees of freedom, exponentially large Hilbert space

iℏ∂t |ψ⟩ = H |ψ⟩ H = ∑
i

̂p2

2m
+ ∑

ij

Vij + ∑
ijk

Vijk + …

(Hamiltonian operator)
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• Quantum Many-Body Theory  Quantum Field Theory→

• Every  labels one quantum mechanical degree of freedom.x

Infinitely many dof’s in any volume V! ψ(x)

H = ∫ d3x { E2(x)
2

+
B(x)

2

2
+ ψ†(x)γ0(iγ ⋅ ∇ + m)ψ(x)}

• Example (Quantum) Electrodynamics

 “Heisenberg

field operator”
Ψ
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• Quantum Field Theory  Lattice Quantum Field Theory→

ψ(x)

• Lattice Quantum Field Theory ~ Quantum Many Body Theory
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Quantum Computation for Physics
Challenges

H = ∫ d3x { E2(x)
2

+
B(x)

2

2
+ ψ†(x)γ0(iγ ⋅ ∇ + m)ψ(x)}

• Gauge Theories (e.g. QED)

• Redundancy, not all dofs are physical!

• Gauss law (operator) defines physical sector

eiG(x) |ψphys⟩ = |ψphys⟩

G(x) = ∇xE(x) − J(x)



How to compute something?
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Quantum Computation for Nuclear Physics
Quantum Chromodynamics (QCD)

• From Hamiltonian to Lagrangian

(Ga
μν = ∂μAa

ν − ∂νAa
μ − igf abcAb

μ Ac
ν)

• … to path integral Z = ∫ dA eiSQCD[A]• … to path integral
(SQCD = ∫ d4xℒQCD → a3

S ∑
n

ℒlattice
QCD )

dA ≡ ∏
x

dA(x) → ∏
n

dA(n)

• In Euclidean Spacetime: statistical mechanics problem

ZE = ∫ dA e−SE[A] Lattice Monte-Carlo simulations 
work in many dimensions!

Lattice QCD simulations



Quantum Computation for Nuclear Physics
Lattice QCD simulations

(*) over-simplfication. Please don’t be mad, lattice practitioners



Quantum Computation for Nuclear Physics

• Very expensive

Lattice QCD simulations

(*) over-simplfication. Please don’t be mad, lattice practitioners



Quantum Computation for Nuclear Physics

• Very expensive
• Do not work for various interesting problems (*)!

Lattice QCD simulations

(*) over-simplfication. Please don’t be mad, lattice practitioners



Quantum Computation for Nuclear Physics

• Very expensive
• Do not work for various interesting problems (*)!

Lattice QCD simulations

(*) over-simplfication. Please don’t be mad, lattice practitioners



Quantum Computation for Nuclear Physics

• Very expensive
• Do not work for various interesting problems (*)!

Lattice QCD simulations

(*) over-simplfication. Please don’t be mad, lattice practitioners

ZE = ∫ dA e−SE[A;μ]



Quantum Computation for Nuclear Physics

• Very expensive
• Do not work for various interesting problems (*)!

Lattice QCD simulations

(*) over-simplfication. Please don’t be mad, lattice practitioners

ZE = ∫ dA e−SE[A;μ]

imaginary!
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How to do it?
Step 1: Digitization

ℋfermions ↔ ℋqubits

H = − t∑
n

c†
ncn+1 + h . c .

+m∑
n

(−1)nc†
ncn + interactions

• Example 1D: fermions

n n+1

• Fermion = 2 states 

    (occupied/unoccupied)

• qubit = 2 states 

    ( |1⟩, |0⟩)

• Local Hilbert space ℋ = ⊗n ℋn
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How to do it?
Step 2: Come up with an algorithm

|ψ(t)⟩ = U(t) |ψ⟩

• Example: Real-time dynamics 

   How does state  evolve over time?|ψ⟩

time evolution operator

initial statefinal state

U(t) = e−iHt |ψ⟩
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How to do it?
Step 2: Come up with an algorithm

• Figure out how to set up   

• and how to extract information about  through measurement

|ψ⟩

|ψ(t)⟩

• Decompose U(t) into circuit
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n

[En
2

2
−

i
2as

(ψ†
nUnψn+1−h . c.) + m(−1)nψ†

nψn]• Lattice theory



Operator formulation of Lattice Gauge Theory



Operator formulation of Lattice Gauge Theory
• Hilbert space, gauge sector

̂En |en⟩ = En |en⟩
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Operator formulation of Lattice Gauge Theory
• Hilbert space, gauge sector

̂En |en⟩ = En |en⟩

Ûn |en⟩ = |en + 1⟩

• Truncation / Digitization • Map onto qubits
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Operator formulation of Lattice Gauge Theory
• A state of the full theory

• Most of Hilbert space is unphysical, Gauss law (*)

Gn = En − En−1 − e[ψ†
nψn +

(−1)n − 1
2 ]

(can see this because in 1+1d can integrate out Gauss law to  
remove gauge fields, physical Hilbert space can be represented with 6 qubits, instead of 24)

• Hamiltonian commutes with Gauss law 
      If initial state is physical, it will stay physical[H, Gn] = 0

|ψ(t)⟩ = U(t) |ψ⟩ = e−iHt |ψ⟩
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Operator formulation of Lattice Gauge Theory

• Take a look at e.g. https://arxiv.org/pdf/2002.11146.pdf 
    to see examples of actual circuits !

|ψ(t)⟩ = U(t) |ψ⟩ = e−iHt |ψ⟩

U(t) = ∏
t

U(δt)

“Trotterization”

https://arxiv.org/pdf/2002.11146.pdf
https://arxiv.org/pdf/2002.11146.pdf


Operator formulation of Lattice Gauge Theory

circuits from https://arxiv.org/pdf/2002.11146.pdf

https://arxiv.org/pdf/2002.11146.pdf
https://arxiv.org/pdf/2002.11146.pdf
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    what is |P⟩?



New Ideas
Quantum Computation for the Electron Ion Collider

• Measured are “real-time correlation 
    functions”  ⟨P |Jμ(x)Jν(0) |P⟩

• What is the structure of the proton, 
    what is |P⟩?

Quantum computers can go where classical computing fails!



Summary
Very exciting times ahead! - (Second) Quantum Revolution!

Enjoy thinking differently about problem? Go quantum!

source: IBM source: Microsoft

source: Google

source: Ion-Q, C. Monroe

source: NIST

source: Rigetti

source: Figuera group, BNL

source: APS



Your turn!
Any questions?

(or email me: nmueller@bnl.gov)

I will hang around on Bluejeans after this lecture  
and we can discuss on virtual whiteboard



PS: Bye, bye BNL 
and thanks for all the fun! 

(this was my last talk as a BNL’er here)



Backup: Elementary Circuits / Gates

source: wikipedia source: IBM Q Experience
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Backup: What is a path integral?
• Path integral for single particle

• Path integral for many body theory: 

   (Quantum) Field Theory

Heisenberg Field Operator
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Backup: What is a path integral?
• Path Integral = Representation of quantum mechanical amplitude

not so crucial  
to understand now!
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